Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
2.
Autophagy ; : 1-18, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522078

ABSTRACT

A large proportion of patients with chronic pain experience co-morbid anxiety. The medial prefrontal cortex (mPFC) is proposed to underlie this comorbidity, but the molecular and neuronal mechanisms are not fully understood. Here, we reported that impaired neuronal macroautophagy in the prelimbic cortical (PrL) subregion of the mPFC paralleled the occurrence of anxiety-like behaviors in rats with chronic spared nerve injury (SNI). Intriguingly, such macroautophagy impairment was mainly observed in a FOS/c-Fos+ neuronal subpopulation in the PrL. Chemogenetic inactivation of this comorbid anxiety-related neuronal ensemble relieved pain-induced anxiety-like behaviors. Rescuing macroautophagy impairment in this neuronal ensemble relieved chronic pain-associated anxiety and mechanical allodynia and restored synaptic homeostasis at the molecular level. By contrast, artificial disruption of macroautophagy induced early-onset co-morbid anxiety in neuropathic rats, but not general anxiety in normal rats. Taken together, our work identifies causal linkage between PrL neuronal macroautophagy dysfunction and comorbid anxiety in neuropathic pain and provides novel insights into the role of PrL by differentiating its contribution in pain-induced comorbid anxiety from its modulation over general anxiety-like behaviors.Abbreviation: AAV: adeno-associated viruses; ACC: anterior cingulate cortex; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CNO: clozapine-N-oxide; CQ: chloroquine; DIA: data independent acquisition; DIO: double floxed inverse orf; DLG4/PSD-95: discs large MAGUK scaffold protein 4; Dox: doxycycline; GABA: γ-aminobutyric acid; GFP: green fluorescent protein; GO: gene ontology; Gi: inhibitory guanine nucleotide-binding proteins; HsCHRM4/M4D: human cholinergic receptor muscarinic 4; HsSYN: human synapsin; KEGG: Kyoto encyclopedia of genes and genomes; LAMP1: lysosomal-associated membrane protein 1; LC3-II: PE conjugated microtubule-associated protein 1 light chain3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mPFC: medial prefrontal cortex; P2A: 2A self-cleaving peptide; PPI: protein-protein interaction networks; PrL: prelimbic cortex; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; rtTA: reverse tetracycline-transactivator; SDS-PAGE: sodium dodecylsulfate-polyacrylamide gel electrophoresis; SHANK3: SH3 and multiple ankyrin repeat domains 3; SLC1A1/EAAC1: solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, systemXag), member 1; SNAP23: synaptosomal-associated protein 23; SNI:spared nerve injury; SQSTM1/p62: sequestosome 1; SYT3: synaptotagmin 3; TRE: tetracycline-responsive element; TRE3G: third-generation tetracycline-responsive element.

3.
Heliyon ; 10(3): e24604, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322876

ABSTRACT

This paper aimed to investigate the role of lncRNA HCG18 (HCG18) in the progression of diabetic cardiomyopathy (DCM) and potential mechanisms. Streptozocin (STZ) was used to induce DCM model in rats, which was confirmed by blood glucose concentration, body weight, and HE staining. Myocardial apoptosis was detected by TUNEL. H9c2 cardiomyocytes were used to construct cell models of DCM through treatment of high glucose. The results showed that HCG18 was overexpressed in STZ induced DCM rat model and high glucose induced H9c2 cardiomyocytes. Si-HCG18 significantly increased cell viability, reduced cell apoptosis, attenuated activities of myocardial enzymes and enhanced activities of antioxidant enzymes in STZ induced DM model and high glucose induced H9c2 cardiomyocytes, while the results of upregulation of HCG18, in high glucose induced H9c2 cardiomyocytes, were opposite with that of si-HCG18. MiR-9-5p was a target of HCG18, and which was down-regulated in cardiomyocytes of DCM. The overexpression of miR-9-5p could neutralize the high glucose induced cardiomyocyte injury, and the silence of miR-9-5p could reverse the effect of si-HCG18 on high glucose induced cardiomyocytes. MiR-9-5p could directly target to IGF2R, and IGF2R was overexpressed in cardiomyocytes of DCM. Up-regulation of IGF2R can reverse the protective effect of si-HCG18 on cardiomyocytes. Taken together, HCG18 is significantly increased in cardiomyocytes of DCM. Down-regulation of HCG18 can improve cardiomyocyte injury through miR-9-5p/IGF2R axis in DCM.

4.
Gene ; 896: 148056, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042217

ABSTRACT

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Fatty Acids , Perciformes , Animals , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Acyltransferases/metabolism , Cloning, Molecular , Fatty Acids/metabolism , Fish Proteins/metabolism , Mammals/genetics , Palm Oil/metabolism , Perciformes/genetics , Perciformes/metabolism , Phosphatidylcholines/metabolism , Phospholipids/metabolism , RNA, Messenger/genetics
5.
BMC Ophthalmol ; 23(1): 505, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087283

ABSTRACT

BACKGROUND: It is a very rare form of ocular motility characterized by alternating strabismus and orthotropia. We report a patient with a 48-h cycle of esohypotropia associated with axial high myopia that resolved by Yokoyama procedure. CASE PRESENTATION: A 43-year-old female patient who underwent left medial rectus muscle recession and lateral rectus muscle resection elsewhere due to highly myopic strabismus 2 years ago. The patient experienced a recurrence of left esohypotropia 12 months after undergoing surgery, exhibiting a 48-hour cycle. The cycle is one full day of esohypotropia and one day of orthotropia. The patient exhibited a case of high myopia in the left eye, characterized by a diopter measurement of -24.00DS and an eye axis measurement of 28.43 mm. Orbital CT showed supertemporal dislocation of the posterior portion of the elongated globe out from the muscle cone. Based on these observations, we performed Yokoyama procedure by uniting the muscle bellies of the superior rectus(SR) and lateral rectus (LR) muscles to restoring the dislocated globe back into the muscle cone. CONCLUSIONS: When cyclic strabismus is combined with axial high myopia, the Yokoyama procedure was effective and cycles are successfully terminated without overcorrection on no squint days. The purpose of this procedure is to put the dislocated globe back into its muscle cone by uniting the muscle bellies of the superior rectus and lateral rectus.


Subject(s)
Esotropia , Myopia , Strabismus , Female , Humans , Adult , Esotropia/surgery , Ophthalmologic Surgical Procedures/methods , Strabismus/etiology , Strabismus/surgery , Myopia/complications , Myopia/surgery , Oculomotor Muscles/surgery
6.
J Fungi (Basel) ; 9(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37888275

ABSTRACT

Hericium rajendrae is an emerging species in the genus Hericium with few members. Despite being highly regarded due to its rarity, knowledge about H. rajendrae remains limited. In this study, we sequenced, de novo assembled, and annotated the complete genome of H. rajendrae NPCB A08, isolated from the Qinling Mountains in Shaanxi, China, using the Illumina NovaSeq and Nanopore PromethION technologies. Comparative genomic analysis revealed similarities and differences among the genomes of H. rajendrae, H. erinaceus, and H. coralloides. Phylogenomic analysis revealed the divergence time of the Hericium genus, while transposon analysis revealed evolutionary characteristics of the genus. Gene family variation reflected the expansion and contraction of orthologous genes among Hericium species. Based on genomic bioinformation, we identified the candidate genes associated with the mating system, carbohydrate-active enzymes, and secondary metabolite biosynthesis. Furthermore, metabolite profiling and comparative gene clusters analysis provided strong evidence for the biosynthetic pathway of erinacines in H. rajendrae. This work provides the genome of H. rajendrae for the first time, and enriches the genomic content of the genus Hericium. These findings also facilitate the application of H. rajendrae in complementary drug research and functional food manufacturing, advancing the field of pharmaceutical and functional food production involving H. rajendrae.

7.
Int J Chron Obstruct Pulmon Dis ; 18: 1883-1897, 2023.
Article in English | MEDLINE | ID: mdl-37662486

ABSTRACT

Objective: Cigarette smoke exposure is one of the major risk factors for the development of chronic obstructive pulmonary disease (COPD). Ginseng saponin Rb1 (Rb1) is a natural extract from ginseng root with anti-inflammatory and anti-oxidant effects. However, the underlying mechanism of the Rb1 in COPD remains unknown. Therefore, we sought to explore the role of Rb1 in cigarette smoke-induced damage and to reveal the potential mechanism. Methods: The cell viability and lactose dehydrogenase (LDH) activity were analyzed using cell counting kit-8 (CCK-8) and LDH release assays. We further investigated the inflammation, apoptosis and oxidative stress markers and analyzed the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid-2-related factor 2 (Nrf2) pathways in BEAS-2B cells and COPD rat model following cigarette smoke extract (CSE) exposure. Results: Our results showed that CSE promoted inflammation, apoptosis and oxidative stress in BEAS-2B cells. Rb1 suppressed the inflammatory response by inhibiting expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß and inhibiting the NF-κB signaling pathway. Rb1 possessed the ability to hinder cell apoptosis induced by CSE. In addition, Rb1 concurrently reduced CSE-induced oxidative reactions and promoted Nrf2 translocation to nucleus. For in vivo study, Rb1 treatment alleviated CSE-induced lung injury, apoptosis, reactive oxygen species (ROS) release and inflammatory reactions. Also, Rb1 treatment activated Nrf2 signaling and inactivated NF-κB signaling in COPD rats. Conclusion: Rb1 attenuates CSE-induced inflammation, apoptosis and oxidative stress by suppressing NF-κB and activating Nrf2 signaling pathways, which provides novel insights into the mechanism underlying CSE-induced COPD.


Subject(s)
Cigarette Smoking , Panax , Pulmonary Disease, Chronic Obstructive , Animals , Rats , NF-kappa B , NF-E2-Related Factor 2 , Cigarette Smoking/adverse effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/etiology , Signal Transduction , Oxidative Stress , Inflammation/drug therapy , Inflammation/prevention & control , Apoptosis
8.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762124

ABSTRACT

Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.


Subject(s)
Chronic Pain , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Potassium Channels , Animals , Mice , Action Potentials , Cyclic Nucleotide-Gated Cation Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Nociception , Potassium Channels/genetics , Potassium Channels/metabolism , CA1 Region, Hippocampal/metabolism
9.
Free Radic Biol Med ; 208: 402-417, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37660837

ABSTRACT

Oxidized low-density lipoprotein (OX-LDL)-induced inflammation and autophagy dysregulation are important events in the progression of atherosclerosis. Phosphatidylethanolamine (PE), a multifunctional phospholipid that is enriched in cells, has been proven to be directly involved in autophagy which is closely associated with inflammation. However, whether PE can influence OX-LDL-induced autophagy dysregulation and inflammation has not been reported. In the present study, we revealed that OX-LDL significantly induced macrophage inflammation through the CD36-NLRP1-caspase-1 signaling pathway in fish. Meanwhile, cellular PE levels were significantly decreased in response to OX-LDL induction. Based on the relationship between PE and autophagy, we then examined the effect of PE supplementation on OX-LDL-mediated autophagy impairment and inflammation induction in macrophages. As expected, exogenous PE restored impaired autophagy and alleviated inflammation in OX-LDL-stimulated cells. Notably, autophagy inhibitors reversed the inhibitory effect of PE on OX-LDL-induced maturation of IL-1ß, indicating that the regulation of PE on OX-LDL-induced inflammation is dependent on autophagy. Furthermore, the positive effect of PE on OX-LDL-induced inflammation was relatively conserved in mouse and fish macrophages. In conclusion, we elucidated the role of the CD36-NLRP1-caspase-1 signaling pathway in OX-LDL-induced inflammation in fish and revealed for the first time that altering PE abundance in OX-LDL-treated cells could alleviate inflammasome-mediated inflammation by inducing autophagy. Given the relationship between OX-LDL-induced inflammation and atherosclerosis, this study prompts that the use of PE-rich foods promises to be a new strategy for atherosclerosis treatment in vertebrates.


Subject(s)
Atherosclerosis , Inflammasomes , Phosphatidylethanolamines , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Autophagy , Caspase 1/genetics , Caspase 1/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Phosphatidylethanolamines/pharmacology
11.
Front Endocrinol (Lausanne) ; 14: 1164112, 2023.
Article in English | MEDLINE | ID: mdl-37223013

ABSTRACT

Introduction: Autophagy, an innate safeguard mechanism for protecting the organism against harmful agents, is implicated in the survival of pancreatic â cells and the development of type 2 diabetes mellitus (T2DM). Potential autophagy-related genes (ARGs) may serve as potential biomarkers for T2DM treatment. Methods: The GSE25724 dataset was downloaded from the Gene Expression Omnibus (GEO) database, and ARGs were obtained from the Human Autophagy Database. The differentially expressed autophagy-related genes (DEARGs) were screened at the intersection of ARGs and differentially expressed genes (DEGs) between T2DM and non-diabetic islet samples, which were subjected to functional enrichment analyses. A protein-protein interaction (PPI) network was constructed to identify hub DEARGs. Expressions of top 10 DEARGs were validated in human pancreatic â-cell line NES2Y and rat pancreatic INS-1 cells using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell viability and insulin secretion were measured after cell transfection with lentiviral vector EIF2AK3 or RB1CC1 into islet cells. Results: In total, we discovered 1,270 DEGs (266 upregulated and 1,004 downregulated genes) and 30 DEARGs enriched in autophagy- and mitophagy-related pathways. In addition, we identified GAPDH, ITPR1, EIF2AK3, FOXO3, HSPA5, RB1CC1, LAMP2, GABARAPL2, RAB7A, and WIPI1 genes as the hub ARGs. Next, qRT-PCR analysis revealed that expressions of hub DEARGs were consistent with findings from bioinformatics analysis. EIF2AK3, GABARAPL2, HSPA5, LAMP2, and RB1CC1 were both differentially expressed in the two cell types. Overexpression of EIF2AK3 or RB1CC1 promoted cell viability of islet cells and increased the insulin secretion. Discussion: This study provides potential biomarkers as therapeutic targets for T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Animals , Rats , Diabetes Mellitus, Type 2/genetics , Genes, Regulator , Cell Survival , Endoplasmic Reticulum Chaperone BiP , Mitophagy
12.
Angew Chem Int Ed Engl ; 62(1): e202213281, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36178079

ABSTRACT

A visible light-induced Co-catalyzed highly regio- and stereoselective reductive coupling of vinyl azaarenes and alkynes has been developed. Notably, Hünig's base together with simple ethanol has been successfully applied as the hydrogen sources instead of commonly used Hantzsch esters in this catalytic photoredox reaction. This approach has considerable advantages for the straightforward synthesis of stereodefined multiple substituted alkenes bearing an azaarene motif, such as excellent regioselectivity (>20 : 1 for >30 examples) and stereoselectivity (>20 : 1 E/Z), broad substrate scope and good functional group compatibility under mild reaction conditions, which has been utilized in the concise synthesis of natural product monomorine I. A reasonable catalytic reaction pathway involving protolysis of the cobaltacyclopentene intermediate has been proposed based on the mechanistic studies.

13.
J Am Chem Soc ; 144(50): 23001-23009, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36478461

ABSTRACT

A new regio- and stereoselective reductive coupling of alkynes and crotononitrile has been developed via visible light organophotoredox cobalt dual catalysis. A variety of enantioenriched homoallylic nitriles bearing a stereodefined trisubstituted alkene have been easily synthesized with good to excellent regio- (up to >20:1 rr), stereo- (>20:1 E/Z), and enantioselectivity (up to 98% ee) control under mild conditions. The corresponding nitrile products were smoothly converted into various chiral building blocks. Remarkably, a simple organic base together with water have been utilized as hydrogen sources in this photoinduced reductive reaction.


Subject(s)
Alkynes , Nitriles , Molecular Structure , Stereoisomerism
14.
Cell Rep ; 41(11): 111833, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516746

ABSTRACT

Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Mice , Animals , Amygdala/physiology , Nociception , Prefrontal Cortex/physiology , Pain
15.
Front Nutr ; 9: 1024631, 2022.
Article in English | MEDLINE | ID: mdl-36505250

ABSTRACT

Unfolded protein responses from endoplasmic reticulum (ER) stress have been implicated in inflammatory signaling. The vicious cycle of ER stress and inflammation makes regulation even more difficult. This study examined effects of farnesoid X receptor (FXR) in ER-stress regulation in large yellow croakers. The soybean-oil-diet-induced expression of ER stress markers was decreased in fish with FXR activated. In croaker macrophages, FXR activation or overexpression significantly reduced inflammation and ER stress caused by tunicamycin (TM), which was exacerbated by FXR knockdown. Further investigation showed that the TM-induced phosphorylation of PERK and EIF2α was inhibited by the overexpression of croaker FXR, and it was increased by FXR knockdown. Croaker NCK1 was then confirmed to be a regulator of PERK, and its expression in macrophages is increased by FXR overexpression and decreased by FXR knockdown. The promoter activity of croaker NCK1 was inhibited by yin-yang 1 (YY1). Furthermore, the results show that croaker FXR overexpression could suppress the P65-induced promoter activity of YY1 in HEK293t cells and decrease the TM-induced expression of yy1 in macrophages. These results indicate that FXR could suppress P65-induced yy1 expression and then increase NCK1 expression, thereby inhibiting the PERK pathway. This study may benefit the understanding of ER stress regulation in fish, demonstrating that FXR can be used in large yellow croakers as an effective target for regulating ER stress and inflammation.

16.
Front Genet ; 13: 917344, 2022.
Article in English | MEDLINE | ID: mdl-36186458

ABSTRACT

Background: Indiolethylamine-N-methyltransferase (INMT) is a methyltransferase responsible for transferring methyl groups from methyl donor SAM to its substrate. S-adenosyl-l-methionine (SAM), obtained from the methionine cycle, is a naturally occurring sulfonium compound that is vital to cellular metabolism. The expression of INMT is down-regulated in many tumorous tissues, and it may contribute to tumor invasion and metastasis. Nevertheless, the expression of INMT and its relationship to methylation and immune infiltrates in head and neck squamous cell carcinoma (HNSC) remains a mystery. Thus, we evaluated expression, clinicopathological features, prognosis, several critical pathways, DNA methylation, and immune cell infiltration for the first time. Methods: Analysis of the clinicopathological characteristics of INMT expression, several tumor-related bioinformatics databases were utilized. In addition, the role of INMT expression was analyzed for prognosis. Several INMT-related pathways were enriched on the LinkedOmics website. In addition, we have analyzed the methylation of INMT in HNSC in detail by using several methylation databases. Lastly, the relationship between INMT gene expression and immune infiltration was analyzed with ssGSEA, Timer, and TISIDB. Results: In HNSC, mRNA and protein levels were significantly lower than in normal tissues. The low expression of INMT was statistically associated with T stage, histological grade, gender, smoking history, and alcohol consumption. HNSC patients with low INMT expression have a poorer OS (overall survival) compared to those with high levels of expression. In addition, the multivariate analysis revealed INMT expression to be a remarkable independent predictor of prognosis in HNSC patients. An analysis of gene enrichment showed that several pathways were enriched in INMT, including the Ras signaling pathway, the cGMP-PKG signaling pathway, and others. Moreover, methylation patterns of INMT detected in a variety of methylation databases are closely associated with mRNA expression and prognosis. Finally, INMT was significantly correlated with immune infiltration levels. Conclusion: HNSC with low levels of INMT exhibits poor survival, hypomethylation, and immune infiltration. For HNSC, this study presented evidence that INMT is both a biomarker of poor prognosis and a target of immunotherapy.

17.
Br J Nutr ; : 1-14, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35811407

ABSTRACT

The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.

18.
Front Immunol ; 13: 892901, 2022.
Article in English | MEDLINE | ID: mdl-35844501

ABSTRACT

Octanoate is a type of classical medium-chain fatty acids, which is widely used to treat neurological and metabolic syndrome. However, the specific role of octanoate in repairing intestinal health impairment is currently unknown. Therefore, we investigated whether dietary octanoate repaired the intestinal damage induced by surplus soybean oil in Larimichthys crocea. In this study, dietary octanoate alleviated abnormal morphology of the intestine and enhanced expression of ZO-1 and ZO-2 to improve intestinal physical barrier. Further, dietary octanoate increased antioxidant enzymic activities and decreased the level of ROS to alleviate the intestinal oxidative stress. Dietary octanoate also attenuated the expression of proinflammatory cytokines and the polarity of macrophage to reduce the intestinal inflammatory response. Moreover, the result of intestinal microbial 16S rRNA sequence showed that dietary octanoate repaired the intestinal mucosal microbial dysbiosis, and increased the relative abundance of Lactobacillus. Dietary octanoate supplementation also increased the level of acetic acid in intestinal content and serum through increasing the abundance of acetate-producing strains. Overall, in Larimichthys crocea, dietary octanoate might alleviated oxidative stress, inflammatory response and microbial dysbiosis to repair the intestinal damage induced by surplus soybean oil. This work provides vital insights into the underlying mechanisms and treatment strategies for intestinal damage in vertebrates.


Subject(s)
Perciformes , Soybean Oil , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Caprylates/metabolism , Dysbiosis , Intestines , Oxidative Stress , Perciformes/genetics , RNA, Ribosomal, 16S , Soybean Oil/pharmacology
19.
World J Clin Cases ; 10(16): 5387-5393, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35812651

ABSTRACT

BACKGROUND: Minimal change disease is a common cause of nephrotic syndrome (NS) in children and has a good prognosis. Idiopathic membranous nephropathy (IMN), a rare cause of NS in children, may progress to chronic kidney disease. However, there is little data on how to evaluate and treat IMN in children. CASE SUMMARY: In this article, we report the case of a 7-year-old boy with steroid-resistant NS. After cyclophosphamide pulse therapy combined with oral prednisone, the urinary protein results remained positive. Renal biopsy confirmed the pathological diagnosis of stage II MN, with positivity for phospholipase A2 receptor. Other immunological and infectious diseases relevant to secondary MN were ruled out by laboratory tests. Subsequently, tacrolimus plus prednisone was administered, and the therapeutic effect was satisfactory. CONCLUSION: IMN is rare in children. The main clinical manifestation is NS. The diagnosis depends on renal biopsy. There is little evidence-based data on the treatment of IMN in children. Therefore, large-sample randomized controlled trials need to be performed. Individualized treatment should be used to improve the prognosis of the disease.

20.
J Nutr ; 152(8): 1991-2002, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35679100

ABSTRACT

BACKGROUND: Although dietary DHA alleviates Toll-like receptor (TLR)-associated chronic inflammation in fish, the underlying mechanism is not well understood. OBJECTIVES: This study aimed to explore the role of Tlr22 in the innate immunity of large yellow croaker and investigate the anti-inflammatory effects of DHA on Tlr22-triggered inflammation. METHODS: Head kidney-derived macrophages of croaker and HEK293T cells were or were not pretreated with 100 µM DHA for 10 h prior to polyinosinic-polycytidylic acid (poly I:C) stimulation. We executed qRT-PCR, immunoblotting, and lipidomic analysis to examine the impact of DHA on Tlr22-triggered inflammation and membrane lipid composition. In vivo, croakers (12.03 ± 0.05 g) were fed diets containing 0.2% [control (Ctrl)], 0.8%, and 1.6% DHA for 8 wk before injection with poly I:C. Inflammatory genes expression and rafts-related lipids and protein expression were measured in the head kidney. Data were analyzed by ANOVA or Student t test. RESULTS: The activation of Tlr22 by poly I:C induced inflammation, and DHA diminished Tlr22-targeted inflammatory gene expression by 56-73% (P ≤ 0.05). DHA reduced membrane sphingomyelin (SM) and SFA-containing phosphatidylcholine (SFA-PC) contents, as well as lipid raft marker caveolin 1 amounts. Furthermore, lipid raft disruption suppressed Tlr22-induced Nf-κb and interferon h activation and p65 nuclear translocation. In vivo, expression of Tlr22 target inflammatory genes was 32-64% lower in the 1.6% DHA group than in the Ctrl group upon poly I:C injection (P ≤ 0.05). Also, the 1.6% DHA group showed a reduction in membrane SM and SFA-PC contents, accompanied by a decrease in caveolin 1 amounts, compared with the Ctrl group. CONCLUSIONS: The activation of Tlr22 signaling depends on lipid rafts, and DHA ameliorates the Tlr22-triggered inflammation in both head kidney and head kidney-derived macrophages of croaker partially by altering membrane SMs and SFA-PCs that are required for lipid raft organization.


Subject(s)
Docosahexaenoic Acids , Perciformes , Animals , Caveolin 1/metabolism , Caveolin 1/pharmacology , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Membrane Microdomains/metabolism , Phosphatidylcholines/metabolism , Poly I/metabolism , Poly I/pharmacology , Sphingomyelins/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...